Reading Time: An initial 2 minutes

MATHEMATICS METHODS: UNITS 1 & 2, 2020

Test 1 – (10%)

1.2.1 - 1.2.8

Time Allowed 45 minutes First Name

Surname

Marks

43 marks

Circle your Teacher's Name:

Benko

Bestall

Fraser-Jones

Goh

Koulianos

Luzuk

Rudland

Tanday

Assessment Conditions:

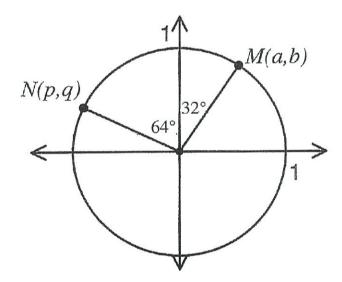
(N.B. Sufficient working out including diagrams must be shown

to gain full marks)

Calculators:

Allowed

❖ Formula Sheet:

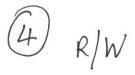

Provided

❖ Notes:

Not Allowed

Question 1

(1, 1, 1 & 1 = 4 marks)



Two points N(p,q) and M(a,b) are plotted on the unit circle above. In terms of a, b, p and/or q, determine the following.

ii)
$$\cos 154^\circ = \rho$$

iii)
$$\cos 26^\circ = -\rho$$

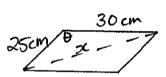
iv)
$$\tan 122^\circ = -\frac{b}{a}$$

(2, 2 = 4 marks)

- (a) Express the following angles in radians. Answers should be simplified, in exact values and in terms of π .
- (i) 45° <u>11</u> v

- (ii) 160° $\frac{8\pi}{9}$
- (b) Express the following angles in degrees.
- (i) $\frac{3\pi}{5}$ radians
 - 108° V

(ii) 2.2 radians (round to nearest degree)

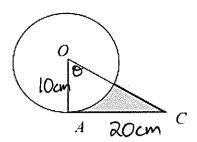


(4) R/W

Question 3

(5 marks)

A parallelogram has side lengths of 25 and 30 cm and an area of 700cm². Find the length of the longest diagonal.


since largest diagonal 0=111° / uses 111° (largest angle)

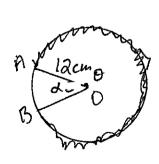
$$\chi^2 = 25^2 + 30^2 - 2 \times 25 \times 30 \cos 111^\circ$$

 $\chi = 45 \cdot 4 \text{ cm} \cdot \sqrt{}$

max 3 if uses 69°

(#marks)

Triangle ACO is a right angled triangle with OA = 10cm, AC = 20cm and the size of angle OAC = 90°. A circle of radius 10cm is drawn, centre O. Find the area of that part of the triangle OAC not lying in the circle.



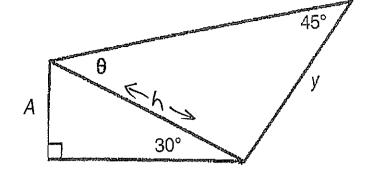
A(Tri) =
$$\frac{10 \times 20}{5}$$

= 100 cm² /
tan 0 = $\frac{20}{10}$
0 = 1.1 R /
A(Sector) = $\frac{10^{2} \times 1.1^{R}}{55.4}$
= 55.4 /
A(Outside) = 100-55.4
= 44.6 cm² /

Question 5

(4 marks)

Points A and B lie on the circumference of a circle with centre O and radius 12cm. If the major arc AB has a length of 60cm, find the area of the minor sector AOB.



$$l=r0$$

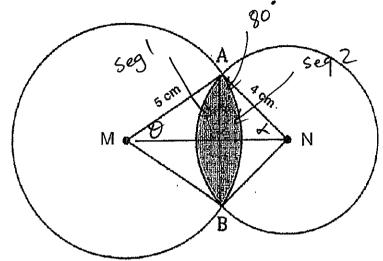
 $60=120$
 $0=5R$ recognises need to find reflex.
angle minor arc $d=271-5$
 $=1.28R$

(4 marks)

For the diagram on the right show that

$$y = 2\sqrt{2} A \sin\theta$$

h=2A & simplifies correctly to get an expression for hypotenise.


$$\frac{y}{\sin\theta} = \frac{2A}{\sin 45}.$$

V uses sine rule to relate y, A & O

1 simplifies correctly

(6 marks)

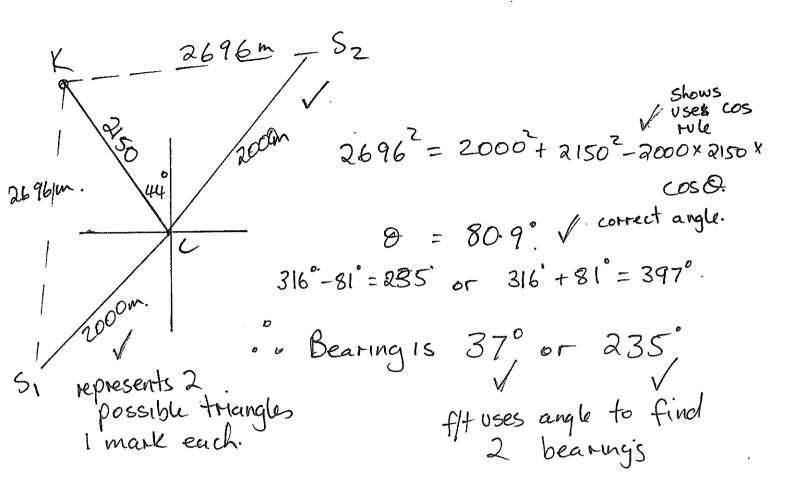
The diagram below shows two overlapping circles of radii 4 cm and 5 cm with the size of angle MAN is 80°. Determine the area of the region common to both circles.

* can use geometry mode to find angles

MN2=42+52-2x4x5 cos 80' MN = 5.8 cm / calculates side (give this mark to, both angles correct) \$2 = 52 + 5.82 - 2 x 5 x 5.8 cos 0

 $\theta = 0.74^R \sqrt{\chi} = 1.00^R \sqrt{\frac{\text{calculate}}{\text{convectangly}}}$ $\theta = 1.48 \sqrt{\chi} = 2.00^R$ 20 = 1.48

A (seg 1) = \(\frac{1}{2} \times 5^2 \left(1.4.8 - \sin 1.48 \right) = 6.07 / calculates A(seg 1)

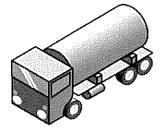

A (Seg 2) = = = = = (2 - sin 2) = 8.8 V calculates A(Seg Z)

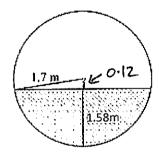
Total area 14.9cm²/

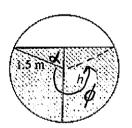
calculates should region. * -1 if area units not given in answer.

(6 marks)

Ken and Sofia set out in different directions from their campsite. Ken walks 2150m on a bearing of 316°, whilst Sofia walks for 2000m on an unknown bearing. When they finish walking the distance between them is 2696m. What are the possible bearings that Sofia could have used?


max 4 if only one trangle/bearing given.


(6 marks)


A tanker, truck A, is loaded with petrol however receives a tyre puncture. Another tanker that is empty, truck B, is sent to be loaded with all the petrol from the tank of truck A. Both trucks have cylindrical tanks.

Truck A has a tank of radius 1.7 m and a length of 6 m. The tank is filled with petrol to a height of 1.58 m.

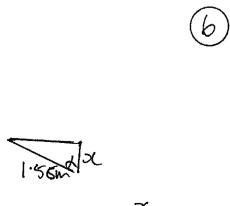
Truck B has the same length but a radius of 1.5m.

Circular ends of the petrol tanks.

The drivers are concerned as Truck B has a smaller tank. How high (h) will the petrol reach in the tank of Truck B?

$$cos\theta = \frac{0.12}{1.7}$$
 $\theta = 1.5^{e}$

Truck A
A(Segment) = $\frac{1}{2} \times 1.7^{2} (3 - \sin 3)$
= $\frac{4.132}{4.132}$


$$4.132 = \frac{1}{2} \times 1.5^{2} (\beta - \sin \beta)$$

$$\phi = 3.41$$

$$2\pi = 3.41 = 2.87$$

$$d = \frac{2.87}{2}$$

$$= 1.44$$

$$x = 8.1998$$

obeight 1.5 + 0.2 = 1.7 m